MIXED REVISION CHAPTERS 10 • 11 • 12

Multiple choice

- 1 If z is a complex number, the solutions to $z^2 2z + 10 = 0$ are: A $z = -1 \pm 3i$ B $z = 1 \pm 3i$ C $z = -1 \pm i\sqrt{3}$ D $z = 1 \pm i\sqrt{3}$ E $z = -1 \pm \sqrt{11}$ 2 What is the vector for the translation 2 down and 5 to the left? A $\begin{bmatrix} -2 & 0 \\ 0 & 5 \end{bmatrix}$ B $\begin{bmatrix} 2 & -5 \end{bmatrix}$ C $\begin{bmatrix} -5 \\ -2 \end{bmatrix}$ D $\begin{bmatrix} -5 & 0 \\ 0 & -2 \end{bmatrix}$ E $\begin{bmatrix} -2 \\ -5 \end{bmatrix}$
- **3** The amplitude and period of the graph of $y = 3 \sin [2(x \pi)]$ are respectively

3, 2 **B**
$$-3, \frac{1}{2}$$
 C $3, \frac{\pi}{2}$ **D** $3, \pi$ **E** $3, 2\pi$

4 The value of
$$\frac{1+\sqrt{3}-i\sqrt{3}}{1+i}$$
 in $a+bi$ form is:

$$A - \frac{1}{2} - i\frac{(2\sqrt{3} - 1)}{2} \qquad B \frac{1}{2} - i\frac{(2\sqrt{3} - 1)}{2} \qquad C \frac{1}{2} - i\frac{(2\sqrt{3} + 1)}{2} \\D \frac{1}{2} + i\frac{(2\sqrt{3} - 1)}{2} \qquad E - \frac{1}{2} - i\frac{(2\sqrt{3} + 1)}{2}$$

5 What is the matrix for a reflection in the line y = 3x?

$$A\begin{bmatrix} 3 & 1\\ 1 & -3 \end{bmatrix} \qquad B\begin{bmatrix} 1 & 3\\ 3 & -1 \end{bmatrix} \qquad C\begin{bmatrix} -8 & 10\\ 10 & 8 \end{bmatrix} \qquad D\begin{bmatrix} -\frac{4}{5} & \frac{3}{5}\\ \frac{3}{5} & \frac{4}{5} \end{bmatrix} \qquad E\begin{bmatrix} \frac{3}{5} & \frac{4}{5}\\ \frac{4}{5} & -\frac{3}{5}\\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}$$

6
$$y = 2 \sec(3x)$$
 can be expressed as
A $y = 2 \cos(3x)$ B $y = \frac{2}{\cos(3x)}$
D $y = \frac{1}{2\cos(3x)}$ E $y = \frac{1}{2}\cos(\frac{1}{3}x)$

7 An equation with roots $\frac{-1 \pm i\sqrt{3}}{2}$ is: A $z^2 + z + 1 = 0$ B $z^2 - z + 1 = 0$ C $z^2 - z - 1 = 0$ D $z^2 + z - 1 = 0$ E none of the above

8 What is the area of the image of the rhombus A(-1, 3) B(1, 7) C(3, 3) D(1, -1) under the transformation $(x, y) \rightarrow (3x + y)(5y - 4x)$?

A 16 B 112 C 224 D 304 E 608
The solution(s) of the equation
$$\tan(2x) = -\frac{\sqrt{3}}{3}$$
 for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ is/are

A
$$-\frac{\pi}{6}, \frac{5\pi}{6}$$
 B $-\frac{\pi}{3}, \frac{4\pi}{3}$ **C** $-\frac{\pi}{6}, \frac{5\pi}{6}$ **D** $\frac{5\pi}{12}$ **E** $-\frac{\pi}{12}, \frac{5\pi}{12}$

C $y = 2\cos\left(\frac{1}{3}x\right)$

10 • 11 • 12 • MIXED REVISION

Short answer

- 1 Factorise $x^2 4x + 5$ over the complex plane.
- 2 What is the image of *A*(−2, 1) *B*(2, 4) *C*(7, 2) *D*(4, −3) under a dilation with factors of 3 in the *x*-direction and 2 in the *y*-direction?
- **3** Express $3\cos(\theta) + 2\sin(\theta)$ in the form of $r\cos(\theta \alpha)$.
- 4 If z = 1 + i and w = -2 + 5i, find in the form x + yi: a $z\overline{w}$ b |z+w|
- 5 Find the image of A(-1, -2) B(2, 3) C(7, 4) under a rotation of $-\frac{\pi}{c}$.

6 Sketch the graph of
$$y = 2 \tan\left(\frac{x}{2}\right)$$
 for $0 < x < 5\pi$.

Application

1 In the diagram, the vertices of a square *ABCD* are represented by the complex numbers *z*, *w*, *u* and *v*.

- a Find the vector \overrightarrow{AD} in terms of z and v. Find the vector \overrightarrow{AB} in terms of z and w.
- **b** Hence, or otherwise, find the complex number *u* that represents *C* in terms of *z*, *w* and *v*.
- 2 Consider the equation $z^2 + uz + (2 i) = 0$. If *i* is a root of the equation, find the complex number *u*.
- **3** What is the single transformation that is the result of a reflection in the line through the origin with inclination 50° followed by a rotation of 20°?
- 4 Use matrices or other methods to prove that dilation is associative under composition. That is, for any dilations S, R and T, $S \circ (R \circ T) = (S \circ R) \circ T$.
- **5** a Express $\sin(x) + 5\cos(x)$ in the form $r\sin(\theta + \alpha)$.
 - **b** Find the general solution for the equation $sin(x) + 5cos(x) = -\frac{1}{2}$.
 - c Use a graph to find the solution(s), in degrees correct to 2 decimal places, of

 $\sin(x) + 5\cos(x) = -\frac{1}{2}$ for $0^\circ \le x \le 360^\circ$.

- 6 The displacement of a particle is given by $x = 2 \sin(3t) \cos(3t)$, where x is measured in metres and time, t, in seconds.
 - **a** Sketch the graph of the displacement to illustrate that the particle follows Simple Harmonic Motion (SHM).
 - **b** Find the amplitude and period of the motion.
 - c Find the greatest distance, correct to 3 decimal places, that the particle moves from its origin.